Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

What is IR?

Information Retrieval (IR) is finding material (usually documents) of an unstructured nature
(usually text) that satisfies an information need within large collections (usually stored on
computers).

Effectiveness of an IR System
Precision : Fraction of retrieved documents that are relevant to users information need.
Recall : Fraction of relevant documents in collection that are retrieved.

To build IR system we need index the documents in advance.
Term-document incidence matrix

Terms are the indexed units (usual words).

Column: a vector for each document, showing the terms that occur in it.
Row: a vector for each term, which shows the documents it appears in.
Query: Answer Boolean expression of terms, do bitwise AND OR and NOT on vectors e.g.:
110100 and 110111 and 101111 = 100100.

Docl Doc?2 Doc3d Docd Doch

TERML 1 1] 0 0
TERM2 1 1 0 1 0
TERMS 1 1 o 1 1
TER ML o 1 o 0 0
TERME 1 0 H] 0 0

Entry is 1 if term occurs

Inverted Index

For each term t, we store a list of all documents that contain t.
Terml | — 1] 2| 4] 11[31[45]|173 | 174 |

TERM?2 |—>~:1j 2[4j 5j ﬁ|15j 5?|132|...|

Term3 | — [2]31 | 54 [101 |

S - e -
dictionary postings

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Inverted Index Construction

Q Collect the documents to be indexed:
Friends, Romans, countrymen. || So let it be with Caesar|. ..

@ Tokenize the text, turning each document into a list of tokens:

Friends | | Romans ||c0untrymen |Sr.>

@ Do linguistic preprocessing, producing a list of normalized
tokens, which are the indexing terms: |friend roman

caunlryman“ﬁcl e

Q Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.

Intersecting Two Posting Lists

TERMI — 1] [2bs [a]o [11]= [31]- [45] [173][174

TERM2 — [2]=[31]= [54]= [102
Intersection =—- —}

@ This is linear in the length of the postings lists.

@ Mote: This only works if postings lists are sorted.

INTERSECT(. pa)
1 answer « ()
2 while gy # NIL and g # NIL
3 do if doclD(p;) = doclD(pz)
then ADD(answer, doclD{p)

p1 + next(py)

pa — next(p,)
else if doclD(p,) < doclD(ps)

then p; + next{p)
9 else ps + next(pa)
100 return answer

o =] ! B

What is a Token?
e Atokenis asequence of characters in a document.
e Example Friends / Romans / Countrymen are tokens in an input.

What is a Term?
e Atermisa (normalised) word type, which is an entry in our IR system dictionary.
e We need normalise words in indexed text as well as query words into the same form

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

What is Lemmatization?
e To reduce inflectional / variant forms to base form
e Example:am, are, is -> be
e Example : car, cars, car’s, cars’ -> car

What is Stemming
e Reduce terms to their “roots” before indexing

Bigram (k-gram) Indexes

Bigram (k-gram) indexes

* Enumerate all k-grams (sequence of k chars)
occurring in any term

* e.g., from text “April is the cruelest month” we get
the 2-grams (bigrams)

$a,ap,pr,ri,il,|$,5iis,s5,5tth he e$,$c,cr,ru,
ue.el le es stt$, $m mo,on,nt h$

— Sisaspecial word boundary symbol

* Maintain a second inverted index from bigrams to
dictionary terms that match each bigram.

Edit Distance

e Given two strings S;and S;, the minimum number of operations to convert one to the
other

e Operations : Insert, Delete, Replace (Transposition)

e Example:dof->dog=1

e Example : cat -> act = 2 (1 transposition)

e Example:cat->dog=3

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

For each term t, we store a list of all documents that contain ¢,

Brutus | — [1] 2[4] 1131 (45 [173 174

Cawsan | — [1] 2] 4] 5] 6 16] 57 132 .|

| Cavpurmia | — [2 [31 [54 [101 |

——
dictionary postings file

@ Motivation for compression in information retrieval systems

@ How can we compress the dictionary component of the
inverted index?

@ How can we compress the postings component of the inverted
index?

@ Term statistics: how are terms distributed in document
collections?

Why Compression?

@ Use less disk space (saves money)

@ Keep more stuff in memory (increases speed)

@ Increase speed of transferring data from disk to memory
(again, increases speed)
o [read compressed data and decompress in memory|
is faster than
[read uncompressed data]

@ Premise: Decompression algorithms are fast.

@ This is true of the decompression algorithms we will use.

Why compression in IR?

@ First, we will consider space for dictionary
@ Main motivation for dictionary compression: make it small
enough to keep in main memory
@ Then for the postings file
@ Motivation: reduce disk space needed, decrease time needed to
read from disk
o Note: Large search engines keep significant part of postings in
memory

@ We will devise various compression schemes for dictionary and
postings.

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Lossy vs Lossless Compression

@ Lossy compression: Discard some information

@ Several of the preprocessing steps we frequently use can be
viewed as lossy compression:

@ downcasing, stop words, porter, number elimination
@ Lossless compression: All information is preserved.
o What we mostly do in index compression

How big is the term vocabulary?

@ That is, how many distinct words are there?

@ In practice,the vocabulary will keep growing with collection
size.(eg: names of new people)

@ Heaps' law: M = kT?

@ M is the size of the vocabulary, T is the number of tokens in
the collection.

o Typical values for the parameters k and b are: 30 < k < 100
and b~ 0.5. Thus M ~ ky/T

@ Notice logM = logk + blogT (y = ¢ + bx)

@ Heaps' law is linear in log-log space.

o It is the simplest possible relationship between collection size
and vocabulary size in log-log space.
@ An empirical finding(Empirical law).

Heaps Law for Reuters

Vocabulary size M as a
function of collection size

o T (number of tokens) for
e Reuters-RCV1. Far these
o ’/’/ data, the dashed line
‘/‘/ log;q M =
] 7 0.40 % log,, T + 1.64 is the
/’ best least squares fit.
: . o Thus, M = 10164 7049
z . "'// and k =10%* ~ 44 and
o /// b =0.40,
S
0 2 . o 6

log10 T

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

Empirical fit for Reuters

@ Good, as we just saw in the graph.

@ Example: for the first 1,000,020 tokens Heaps' law predicts
38,323 terms:

44 % 1,000,020"*° ~ 38,323

@ The actual number is 38,365 terms, very close to the
prediction.

@ Empirical observation: fit is good in general.

Basic Knowledge to Remember

To binary represent an integer n, number of bits need =
[log2(n)] +1

n={2}10 = {10}

n= {3} = {11}

n={4}10 = {100},

Dictionary Compression

@ The dictionary is small compared to the postings file.
@ But we want to keep it in memory.

@ Also: competition with other applications, cell phones,
onboard computers, fast startup time

@ So compressing the dictionary is important.

Recall : Dictionary as Array of Fixed-Width Entries

term document pointer to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 —
space needed: 20 bytes 4 bytes 4 bytes

Space for Reuters: (20+4+-4)*400,000 = 11.2 MB

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Fixed-Width Entries are Bad !

@ Most of the bytes in the term column are wasted.
o We allot 20 bytes for terms of length 1.

@ We can't handle HYDROCHLOROFLUOROCARBONS and
SUPERCALIFRAGILISTICEXPIALIDOCIOUS

@ Average length of a term in English: 8 characters

@ How can we use on average 8 characters per term?

Dictionary as a String

...systilesyzygeticsyzygial syzygyszaibelyiteszecinszono. ..

| |
freq. postings ptr. term ptr. ! !
9 —
92
5

71
12

1l

4 bytes 4 bytes 3 bytes

Space for Dictionary as a String

@ 4 bytes per term for frequency

@ 4 hytes per term for pointer to postings list

@ 8 bytes (on average) for term in string

@ 3 bytes per pointer into string (need log, 8 - 400000 < 24 bits
to resolve 8 - 400,000 positions)

@ Space: 400,000 x (4 +4 +3+8) =7.6MB (compared to 11.2
MB for fixed-width array)

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Dictionary as a String with Blocking

.. .TsystiledsyzygeticBsyzygialGsyzygyllszaibelyitebészecin. ..

freq. postings ptr. term ptr.

9
92
5
71
12

Lllld

@ Example block size k = 4

@ Where we used 4 x 3 bytes for term pointers without blocking

@ ...we now use 3 bytes for one pointer plus 4 bytes for
indicating the length of each term.

o We save 12 — (3 + 4) = 5 bytes per block.
o Total savings: 400,000/4 x5 = 0.5 MB

@ This reduces the size of the dictionary from 7.6 MB to 7.1
MB.

Lookup of a term Without Blocking

Average search cost: (1 4+ 2+2+4 %34 1%4)/8 == 2.6 steps

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

Lookup of a term with Blocking (slightly) slower

JOB @ @ @

Average search cost: (2+3+44+5+1+2+43+4)/8=~ 3 steps.

Postings Compression

@ The postings file is much larger than the dictionary, factor of
at least 10.

@ Key desideratum: store each posting compactly
@ A posting for our purposes is a doclD.

@ For Reuters (800,000 documents), we would use 32 bits per
doclD when using 4-byte integers.

@ Alternatively, we can use log, 800,000 ~ 19.6 < 20 bits per
doclD.

@ Our goal: use a lot less than 20 bits per doclD.

Key Idea : Store Gaps instead of doclIDs

@ Each postings list is ordered in increasing order of doclD.
@ Example postings list: COMPUTER: 283154, 283159, 283202,

@ It suffices to store gaps: 283159-283154=5,
283202-283154=43

@ Example postings list using gaps : COMPUTER: 283154, 5,
43, ...

@ Gaps for frequent terms are small.

@ Thus: We can encode small gaps with fewer than 20 bits.

encoding postings list

THE doclDs . 283042 283043 283044 283045
Eaps 1 1 1
COMPUTER doclDs . 283047 283154 283159 283202
Eaps 107 5 43
ARACHNOCENTRIC doclDs 252000 500100

gaps 252000 248100

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

Variable Length Encoding

o Aim:
o For ARACHNOCENTRIC and other rare terms, we will use
about 20 bits per gap (= posting).
o For THE and other very frequent terms, we will use only a few
bits per gap (= posting).
@ In order to implement this, we need to devise some form of
variable length encoding.
@ Variable length encoding uses few bits for small gaps and
many bits for large gaps.

Variable Byte (BV) Code

@ Used by many commercial/research systems

@ Good low-tech blend of variable-length coding and sensitivity
to alignment matches (bit-level codes, see later).

@ Dedicate 1 bit (high bit) to be a continuation bit ¢.

@ If the gap G fits within 7 bits, binary-encode it in the 7
available bits and set ¢ = 1.

@ Else: encode lower-order 7 bits and then use one or more
additional bytes to encode the higher order bits using the
same algorithm.

@ At the end set the continuation bit of the last byte to 1
(c = 1) and of the other bytes to 0 (¢ = 0).

Examples
doclDs 824 829 215406
gaps 5 214577

VB code 00000110 10111000 10000101 00001101 00001100 1011000

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

Gamma Codes for Gap Encoding

@ You can get even more compression with another type of
variable length encoding: bitlevel code.

@ Gamma code is the best known of these.

@ First, we need unary code to be able to introduce gamma
code.

@ Unary code

@ Represent n as n 1s with a final 0.

@ Unary code for 3is 1110

@ Unary code for 40 is
111111111111111111111111211111111111111110

@ Unary code for 70 is:

111111111111311111133111333131123371311711171331133313311111711311311171111111111110

Gamma Code

@ Represent a gap G as a pair of length and offset.

@ Offset is the gap in binary, with the leading bit chopped off.
o For example 13 — 1101 — 101 = offset

@ Length is the length of offset.

@ For 13 (offset 101), this is 3.

@ Encode length in unary code: 1110.

°

Gamma code of 13 is the concatenation of length and offset:
1110101.

Length of Gamma Code

@ The length of offset is |log, G| bits.

@ The length of lengthis |log, G| + 1 bits,

@ So the length of the entire code is 2 x |log, G| + 1 bits.
@ 7 codes are always of odd length.

@ Gamma codes are within a factor of 2 of the optimal encoding
length log, G.

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Simple Boolean vs Ranking of Result

@ Simple Boolean vs. Ranking of result set

a Simple Boolean retrieval returns matching documents in no
particular arder.

o Google (and most well designed Boolean engines) rank the
result set — they rank good hits (according to some estimator
of relevance) higher than bad hits.

Ranked Retrieval

@ Thus far, our gueries have been Boolean.

o Documents either match or don't.

o Good for expert users with precise understanding of their
needs and of the collection.

@ Also good for applications: Applications can easily consume
1000s of results.

@ Mot good for the majority of users

@ Most users are not capable of writing Boclean queries ...
a . _.ar they are, but they think it's too much wark.

@ Most users don’t want to wade through 1000s of results.

@ This is particularly true of web search.

Problem with Boolean Search : Feast or Famine

@ Boolean queries often result in either too few (=0) or too
many (1000s) results.

@ In Boolean retrieval, it takes a lot of skill to come up with a
query that produces a manageable number of hits.

@ AND gives too few; OR gives too many

Scoring as a basis of Ranked Retrieval

@ We wish to rank documents that are more relevant higher
than documents that are less relevant.

@ How can we accomplish such a ranking of the documents in
the collection with respect to a query?

@ Assign a score to each query-document pair, say in [0, 1].

@ This score measures how well document and query "match”.

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4611

Exam Date: Friday 16t May @ 14:00

Jaccard Coefficient

@ A commonly used measure of overlap of two sets
@ Let A and B be two sets

@ Jaccard coefficient:

AN B|

JACCARD(A, B) = AUB|

(A# BorB#£0)

JACCARD(AA) =1
JACCARD(A,B)=0ifANnB =10

@ Aand B don't have to be the same size.

@ Always assigns a number between 0 and 1.
Example

@ Probleml: What is the query-document match score that the
Jaccard coefficient computes for:
o Query: "University College Cork”
@ Document “Cork City Tourism guide”
s Jaccarn(g, d) = 1/6

What’s wrong with Jaccard?

@ It doesn’t consider term frequency (how many occurrences a
term has). (tf)

@ Rare terms are more informative than frequent terms. Jaccard
does not consider this information. (idf)

@ We need a more sophisticated way of normalizing for the
length of a document.

Tf-idf Weighting

@ The tf-idf weight of a term is the product of its tf weight and
its idf weight.

N
wy g = (1 + log tf, 4) - log o,

@ Best known weighting scheme in information retrieval

@ The term frequency tf; 4 of term t in document d is defined
as the number of times that t occurs in d.

@ df; is the document frequency, the number of documents that
t occurs in.

a df; is an inverse measure of the informativeness of term t.

@ idf; is a measure of the informativeness of the term.

Title : CS4611 Study

u C C Student Name : Brian O Regan
- Student Number : 110707163

“HE "Module : Cs4611

Exam Date: Friday 16t May @ 14:00

Computing TF-IDF : Example

@ Problem2: Given a document containing terms with given
frequencies:
« A(3), B(2), C(1)
« Assume collection contains 10, 000 documents and document
frequencies of these terms are:
A(BD), B(13007, C(250)
Calculate tf-idf weight for A B,C in this document.
A (L + log(3)) # log(12229y — 11.119
B: (1 + log(2)) * log(15ar) = 3.295
C: (1+ log (1)) # log(5e5%) — 3.669

Binary Incidence Matrix

Anthony Julius The Hamlet Othells Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 1 1 0 0 0 1
BruTus 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATHA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0

Each document is represented as a binary vector & {0, THYL.

Count Matrix

Anthony Julius The Hamlet Othelle Macbeth
and Caesar Tempest

Cleopatra
ANTHONY 157 73 0 0 0 1
BruTuUs 4 157 0 2 0 0
CAESAR 232 x 0 2 1 0
CALPURNIA 0 10 0 0 0 0
CLEOPATRA 57 0 0 0 0 0
MERCY 2 0 3] 5 a8
WORSER 2 0 1 1 1 5

Each document is now represented as a count vector & [yl V1.

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Binary -> Count -> Weight Matrix

Anthony Julius The Hamlet Othells Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 5.25 3.18 0.0 00 0.0 0.35
BruTus 1.21 6.10 0.0 1.0 0.0 0.0
CAESAR 8.50 254 0.0 1.51 0.25 00
CALPURNIA 0.0 1.54 0.0 00 0.0 00
CLEOPATRA 2.85 0.0 0.0 00 0.0 00
MERCY 1.51 0.0 1.90 0.12 5.25 0.88
WORSER 1.37 0.0 0.11 4.15 0.25 1.95

Each document is now represented as a real-valued vector of tf-idf
weights € w!¥l.

Summary : Ranked Retrieval in the Vector Space Model

@ Represent the query as a weighted tf-idf vector

@ Represent each document as a weighted tf-idf vector
o Compute the cosine similarity between the query vector and
each document vector
@ Euclidean distance is large for vectors of different lengths, long
documents and short documents (or queries) will be positioned
far apart.
a The angle between Semantically same documents is 0.
@ Rank documents with respect to the query
@ Retum the top K (e.g., K = 10) to the user

Cosine Similarity between Query and Document

) : od sV g
Rl Z el ; dl T r=quf fIvl
lqlldl VL g2 eIV g

gi is the tf-idf weight of term / in the query.

d; is the tf-idf weight of term / in the document.

|g] and |d| are the lengths of § and d.

@ This is the cosine similarity of g and d. .. . or equivalently,
the cosine of the angle between ¢ and d.

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Ranked Retrieval in the Vector Space Model Example

Consider these documents:

Docl Shipment of gold damaged in a fire
Doc2 Delivery of silver arrived in a silver truck
Doc3 Shipment of gold arrived in a truck

o Compute the tf-idf weights for each terms in each document

@ Rank the three documents by computed score for the query
‘gold silver truck’

TERMVECTOR MODEL BASED ON w; = tf;"IDF;

Query, Q: “gold silver truck”
Dy: “Shipment of gold damaged in a fire"
D;: “Delivery of silver arrived in a silver truck”
Ds: “Shipment of gold arrived in a truck”
D = 3; IDF = log(D/df)

Counts, tf; Weights, w; = t"IDF;
Terms 0Dy [0, [D: [df | D/ IDF, [0 D, D; D=
a oia 1 1 I IEEER 1] [1] [1] 0 1]
amved (0 |1 |1 |2 |@2=15 | 01761 |0 1] U761 | 01761
damaged |0 |1 |0 |0 |1 |#1=3 | 04771 [0 TATTT |0 0
delivery oloI1 [I =3 [EXFEN N [1] [EEEEN
fire T[T [0 |0 |1 [#=2 | 04771 |0 TATTT |10 0
aold 711 o Ji T WE=T5 [09TET [O1VeT [04761 [0 [EELF
in o1 [1 [T |3 |3==1 0 1] i] 0 0
of o1 |1 [T |3 |%==1 1]]] 0 0
silier T[(0 |2 |0 |1 |=M==3 |04771 04771 |0 00542 | O
shipment | 0 |1 | @ |1 |2 | ®2=15 | 01761 | O OA761 | O 01761
truck T3 [T |1 |2 |@2=1% | 01761 [O1761 |0 01761 | 01761

DI=0.A7T 1+ 04771+ 0.1761%+ 0.1761%=-05173 = 0.7192

Dy =0.1761°+ 04771+ 0.9542°+0.17617= 12001 =1 005
Da=40.1761%+ 0.1761% + 017612+ 017615 =-01240 =0 3522

Q=10 17615+ 0 47715+ 01761 =-0.2896 =0.5382

e 14,“;»»-:},, - IDy= %w.j f

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Next, we compute all dot products (zero products ignored)
QeDy =0.1761*0.1761 = 0.0310

JeDe =04771 V09542 + 01701 4011761 = L4862

QoD =0.1761"0.1761+0.1761 0.1761 = 0.0620

SQeDy =Z“"Q,jw:‘d
i

Now we calculate the similarity values

Cosine O, = 2201 _ 00310 _ ;400
1 |Q|"|Dy| 0.3382%0.7192

«D- 0.4862
Cogine b, = o ——— =082d6
2 1QI"|Dy| 03382 V10953
, JeD 0.0620
Cosine fp, = 203 =0.3271

|Q|* D3| 0.5382%0.3522

*. Cosine Bp, =S Q. D,)

Z‘“’NQ.JWi.J
LS Q.Ik)= L

2 2
W, W
(o)} 1]

1 Vi

Problem 3

Consider these documents:
Docl aabec

Doc2 bcacc

Doc3 ebd

@ Compute the tf-idf weights for each terms in each document

@ Rank the three documents by computed score for the query 'a

cd
Query:acd
Di:aabec
D2:bcacc
D3:ebd IDF =log(Didf) W = (1+log(tf)idf]
Terms |Q D1 |D2 [D3 |df |D/df |IDF [o] D1 D2 D3
a 1 2 1 o 2] 15 0.1761 04761] 0.2291] 0.1761] 0.0000
o] 1 1 1 3 1 0.0000] 0.0000] 0.0000] 0.0000] 0.0000
G 1 1 3 o 2[15 0.1761 01761 0.1761] 0.2601| 0.0000
d 1 0| 0 1 1 3 0.4771 0.4771] 0.0000] 0.0000[0.4771
e of 1 0 1 2]l 15 0.1761 0.0000] 0.1761] 0.0000] 0.1761
ID1|= [0.3384 Sim(Q,D1)= 0.3918
ID2]= 0.3141 Sim(Q,D2)= 0.4544
|ID3]= 0.5086 Sim(Q,D3)= 0.8317
Q= 0.5382
Q*D1=0.0714
Q*D2= 0.0768
Q*D3= 0.2276

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Precision and Recall

@ Precision (P) is the fraction of retrieved documents that are
relevant

#(relevant items retrieved)

Precision = ~ ; :
#(retrieved items)

= P(relevant|retrieved)

@ Recall (R) is the fraction of relevant documents that are
retrieved

#(relevant items retrieved)

Recall = : : = P(retrieved|relevant)
#(relevant items)
Relevant Nonrelevant
Retrieved true positives (TP) | false positives (FP)
Not retrieved | false negatives (FN) | true negatives (TN)

P = TP/(TP+ FP)
R = TP/(TP+ FN)

accuracy = (TP + TN) /(TP + FP + FN + TN).

Accuracy

@ Accuracy is the fraction of decisions (relevant/nonrelevant)
that are correct.

@ In terms of the contingency table above,
accuracy = (TP + TN) /(TP + FP + FN + TN).

@ Why is accuracy not a useful measure for web information
retrieval?

@ Ans: In IR system normaly only a small fraction of documents
in the collection are relevance, as a result TN =>> TP, even
we have a good IR system which only retrieve relevant
documents, the accuracy between this good IR system with a
poor system(such as always return nothing) is small, thus this
measurement can't help us evaluate IR system.

Title : CS4611 Study

2 u C C Student Name : Brian O Regan
Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Exercise

The snoogle search engine below always returns 0 results ("0
matching results found”), regardless of the query. Why does

snoogle demonstrate that accuracy is not a useful measure in
IR?

Simple trick to maximize accuracy in IR: always say no and
return nothing

You then get 99.99% accuracy on most queries.

Searchers on the web (and in IR in general) want to find
something and have a certain tolerance for junk.

It's better to return some bad hits as long as you return
something.

— We use precision, recall, and F for evaluation, not accuracy.

Precision / Recall Tradeoff

You can increase recall by returning more docs.

Recall is a non-decreasing function of the number of docs
retrieved.
A system that returns all docs has 100% recall!

The converse is also true (usually): It's easy to get high
precision for very low recall.

Which is better: IR sytem1 P: 63% R: 57%, IR system?2 P:
69% R:60%

A Combined Measure : F

F allows us to trade off precision against recall.

11—«

1 (8> +1)PR 2
f— f— h 'fj’ f—
ag+(1—a)g 3P+ R where o

a € [0, 1] and thus 37 € [0,]
Most frequently used: balanced F with 7 =1ora =05

@ This is the harmonic mean of P and R % — %(;1; + }1?)

2PR
° F - 5%

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

F : Exercise

relevant not relevant

retrieved 20 40 60

not retrieved | 60 1,000,000 1,000,060
80 1,000,040 1,000,120

o P =20/(20+40) =1/3
@ R=20/(20+60)=1/4
o Fl =21 =2/7

I
T+
3

Sl

F: Why Harmonic Mean?

@ Why don't we use a different mean of P and R as a measure?

en

e The simple (arithmetic) mean is 50% for “return-everything”
search engine, which is too high.

o e.g., the arithmetic mean

@ Desideratum: Punish really bad performance on either
precision or recall.

o Taking the minimum achieves this.
o But minimum is not smooth and hard to weight.

@ F (harmonic mean) is a kind of smooth minimum.
Difficulties in using Precision, Recall and F

@ We need relevance judgments for information-need-document
pairs = but they are expensive to produce.

o For alternatives to using precision /recall and having to
produce relevance judgments

Framework for the Evaluation of an IR System

@ test collection consisting of (i) a document collection, (ii) a
test suite of information needs and (iii) a set of
relevance judgements for each doc-query pair

e gold-standard judgement of relevance
— classification of a document either as relevant or as
irrelevant wrt an information need

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Assessing Relevance

@ How good is an IR system at satisfaying an information need 7

@ Needs an agreement between judges

— computable via the kappa statistic:

P(A) — P(E)

k. =
PP = "1 P(E)

where:
P(A): the proportion of agreements within the judgements
P(E): what agreement would we get by chance

Example:

Consider the following judgements (from Manning et al., 2008):

Judge 2

Yes | No | Total

Judge 1 | Yes | 300 | 20 | 320
No 10 | 70 80

Total | 310 | 90 | 400

[+]
PlA) = o1 B(E) = Prel}? + Flnotrel)?
= — = e + notre,
400
1320 1310 320 4310 Bl +90
Plelj=-"—+-= = Pinotrel) =
2400 2400 800 &0
]
(A} — FE
kappa = (Al — FLE) k =0.776
1—P(E)

P(A) is the proportion of agreements within the judgements
P(E) is the proportion of expected agreements

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

Relevance Continued

@ Interpretation of the kappa statistic k:

o Values of k in the interval [2/3, 1.0] are seen as acceptable.
o With smaller values: need to redesign relevance assessment
methodology used etc.

@ Note that the kappa statistic can be negative if the
agreements between judgements are worse than random

@ In case of large variations between judgements, one can
choose an assessor as a gold-standard

—+ considerable impact on the absolute assessment
— little impact on the relative assessment

Markov Chains

* A Markov chain consists of n states, plus an nxn
transition probability matrix P.

+ At each step, we are in exactly one of the states.

* For 1 <ijj<n, the matrix entry P; tells us the
probability of j being the next state, given we are
currently in state /.

OO

R
Example

x1 X2

gos 04

x2 0.2 0.8

Po(x1)=1 Py(x2)=0
What is P,(x1) and P,(x2)

P(xT) = PyX 1)« Py + Py(x2) « Poyy = 1%0.640%0.2 = 0.6
P (x2) = Py(X 1)« Py + Py(x2) « Py = 1%0.440%0.8 = 0.4

Pixq) = Pa(x7) « Poyy + Pq() « Poa

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16t May @ 14:00

P,(x1)=0.6 P,(x2)=0.4

What is P,(x1) and P5(xT1)?
Pyix1) = Py(xT) w Poyr + Pr(x2) v Pryrq = 0.6%0.6+0.4%0.2 = 0.44
Px1) = Py(x1) v Py + Pyx2) v Py = 0.4470.6+0.56%0.2 = 0.376

How to calculate P_(x1)?
P(xy) = Pa(xq) v Py + Pa(xa) « Py,
When t goes to oo notice P(x,) = P._;(x;) !

Pt(x]) = Pt(x]) « 0.6+ (]' Pt(XT))* 0.2

— steady state probability
P(x,) =% when t -> oo

X1 X2

o5 o5

x2 1 0

Calculate steady state probability for x1 and x2
Pi(x,) =§ when t -> o

Pi(x5) =§ when t-> o

Model Behind PageRank : Random Walk

= |magine a web surfer doing a random walk on the web
= Start at a random page

= At each step, go out of the current page along one of the
links on that page, equiprobably

In the steady state, each page has a long-term visit rate.

This long-term visit rate is the page’s PageRank.
= PageRank =long-term visit rate = steady state probability.

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

Example Web Graph

/' car benz
‘

ford @
honda . @. leopard
. tiger
Jag cheetah

speed cat lion

Link Matrix for Web Graph

o O O O »r O O
o O O O O = O
O O O O B =B
= O O = =B O O
= O O = O O O
o =, O O O O O

Long Term Visit Rate

Recall: PageRank = long-term visit rate.

Long-term visit rate of page d is the probability that a
web surfer is at page d at a given point in time.

Next: what properties must hold of the web graph for
the long-term visit rate to be well defined?

The web graph must correspond to an ergodic Markov

First a special case: The web graph must not contain
dead ends.

f]

[

a8 o

Q.

)

=

Q.

n

= = B O O O O

Q.

bl

d
0.00
0.00
0.33
0.00
0.00
0.00
0.00

d;
0.00
0.50
0.00
0.00
0.00
0.00
0.00

Graph

d,
1.00
0.50
0.33
0.00
0.00
0.00
0.00

d;
0.00
0.00
0.33
0.50
0.00
0.00
0.33

dy
0.00
0.00
0.00
0.50
0.00
0.00
0.33

ds
0.00
0.00
0.00
0.00
0.00
0.50
0.00

Transistion Probability Matrix P for Web

ds
0.00
0.00
0.00
0.00
1.00
0.50
0.33

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

Dead Ends

--=77

e

= The web is full of dead ends.
= Random walk can get stuck in dead ends.

= |f there are dead ends, long-term visit rates are not
well-defined (or non-sensical).

Teleporting — to get us of dead ends Transition matrix with teleporting
= Atadeadend,j t d b ith prob.
. 1:; Nea end, jJump to a random web page with pro d, d, d, d, d, d d.
)) d, 002 002 088 002 002 002 0.02
= Ata non-dead end, with probability 10%, jump to a random
web page (to each with a probability of 0.1/N). d, 002 045 045 002 002 002 002
= With remaining probability (90%), go out on a random d 0.31 0.02 0.31 031 0.02 0.02 0.02

%)

hyperlink.

. o d, 0.02 0.02 0.02 045 045 0.02 0.02
= For example, if the page has 4 outgoing links: randomly
choose one with probability (1-0.10)/4=0.225 d, 0.02 002 0.02 002 0.02 002 0.88
= 10% is a parameter, the teleportation rate. ds 0.02 0.02 0.02 002 002 045 045
= Note: “jumping” from dead end is independent of
d, 002 002 0.02 031 031 0.02 031

teleportation rate.
Result of Teleporting

= With teleporting, we cannot get stuck in a dead end.

= But even without dead ends, a graph may not have well-
defined long-term visit rates.

= More generally, we require that the Markov chain be
ergodic.

Ergodic Markov Chains

= A Markov chain is ergodic if it is irreducible and aperiodic.
= |rreducibility. Roughly: there is a path from any other page.

= Aperiodicity. Roughly: The pages cannot be partitioned
such that the random walker visits the partitions
sequentially.

= A non-ergodic Markov chain:

1.0
O——=0
1.0

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

= Theorem: For any ergodic Markov chain, there is a unique
long-term visit rate for each state.

= This is the steady-state probability distribution.

= Qver a long time period, we visit each state in proportion
to this rate.

= |tdoesn’t matter where we start.
= Teleporting makes the web graph ergodic.

= —>Web-graph+teleporting has a steady-state probability
distribution.

= —>Fach page in the web-graph+teleporting has a
PageRank.

Formalisation of “visit” : Probability Vector

= A probability (row) vector X = (x,, ..., x,) tells us where
the random walk is at any point.

= Example (o o O . 1 . 0 0 O)
1 2 3 i . N-2 N-1 N

= More generally: the random walk is on the page j with
probability x;.

= Example:
(0.05 0.01 0.0 0.2 .. 0.01 0.05 0.03)
1 2 3 i N-2 N-1 N
= Xx=1

Change in Probability Vector

= |fthe probability vectoris x = (xq, ..., x,), at this step, what
is it at the next step?

= Recall that row i of the transition probability matrix P tells
us where we go next from state /.

= So from X, our next state is distributed as %P

Steady State in Vector Notation

® The steady state in vector notation is simply a vector
i =(m, My, ..., W,) Of probabilities.

= (We use T to distinguish it from the notation for the
probability vector x.)

® 7 is the long-term visit rate (or PageRank) of page i.

= So we can think of PageRank as a very long vector —one
entry per page.

Title : CS4611 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

Steady-State Distribution : Example

= What is the PageRank / steady state in this example?
- 0.75 -
3| @——=@|E

One way of Computing the PageRank T

= Start with any distribution x, e.g., uniform distribution
= After one step, we're at XP.

= After two steps, we're at XP2.

= After k steps, we're at XP*.

= Algorithm: multiply P by increasing powers of P until
convergence.

= This is called the power method.

= Recall: regardless of where we start, we eventually reach the
steady state I

= Thus: we will eventually (in asymptotia) reach the steady state.

Computing PageRank: Power Example

Xl XZ
Pi(d,) Pi(d,)
P,=0.1 P,=09
P,=03 P,=07
t, |0 1 0.3 0.7 =P
t, 0.3 0.7 0.24 0.76 =Xp?
t, 0.24 0.76 0.252 0.748 = xXp3
t; | 0.252 0.748 0.2496 0.7504 |=xp?
t. 025 0.75 0.25 0.75 =Xp-

PageRank vector = 7= (m1, m3) =(0.25, 0.75)
Pld;) =P (d)+ Py + P y(dy) « Py
Pldy) =Py i(d,) + Py + P y(dy) « Py

Title : CS4611 Study

TET

Student Name : Brian O Regan

Student Number : 110707163

Module : C54611

Exam Date: Friday 16" May @ 14:00

PageRank Summary

= Preprocessing
= Given graph of links, build matrix P
= Apply teleportation

= From modified matrix, compute 7

:r?j is the PageRank of page i.

= Query processing
= Retrieve pages satisfying the query
" Rank them by their PageRank

= Return reranked list to the user

PageRank Issues

= Real surfers are not random surfers.

= Examples of nonrandom surfing: back button, short vs. long paths,
bookmarks, directories — and search!

® -> Markov model is not a good model of surfing.
= But it’s good enough as a model for our purposes.

= Simple PageRank ranking produces bad results for many pages.

Consider the query [video service].

The Yahoo home page (i) has a very high PageRank and (ii) contains
both video and service.

= If we rank all Boolean hits according to PageRank, then the Yahoo
home page would be top-ranked.

= (Clearly not desireble.

How Important is PageRank?

= Frequent claim: PageRank is the mast important component of
web ranking.

= The reality:

There are several components that are at least as important: e.g.,
anchor text, phrases, proximity, tiered indexes ...

Rumor has it that PageRank in his original form (as presented here)
now has a negligible impact on ranking!

= However, variants of a page’s PageRank are still an essential part of
ranking.

Addressing link spam is difficult and crucial.

In practice: rank according to weighted combination of raw text
match, anchor text match, PageRank & other factors.

need more lecture on Learning to Rank.

